首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232830篇
  免费   18958篇
  国内免费   14627篇
  2023年   2275篇
  2022年   2686篇
  2021年   9530篇
  2020年   6763篇
  2019年   8450篇
  2018年   8561篇
  2017年   6370篇
  2016年   9096篇
  2015年   13435篇
  2014年   15756篇
  2013年   17284篇
  2012年   20527篇
  2011年   19144篇
  2010年   11787篇
  2009年   10560篇
  2008年   12582篇
  2007年   11230篇
  2006年   9911篇
  2005年   8266篇
  2004年   7133篇
  2003年   6307篇
  2002年   5480篇
  2001年   4924篇
  2000年   4642篇
  1999年   4543篇
  1998年   2536篇
  1997年   2643篇
  1996年   2454篇
  1995年   2316篇
  1994年   2207篇
  1993年   1665篇
  1992年   2450篇
  1991年   1998篇
  1990年   1642篇
  1989年   1392篇
  1988年   1151篇
  1987年   990篇
  1986年   914篇
  1985年   857篇
  1984年   569篇
  1983年   503篇
  1982年   318篇
  1981年   262篇
  1980年   218篇
  1979年   286篇
  1978年   172篇
  1977年   171篇
  1976年   144篇
  1975年   189篇
  1974年   207篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Plant Molecular Biology -  相似文献   
2.
The yeast Saccharomyces cerevisiae possesses two distinct glycyl-tRNA synthetase (GlyRS) genes: GRS1 and GRS2. GRS1 is dually functional, encoding both cytoplasmic and mitochondrial activities, while GRS2 is dysfunctional and not required for growth. The protein products of these two genes, GlyRS1 and GlyRS2, are much alike but are distinguished by an insertion peptide of GlyRS1, which is absent from GlyRS2 and other eukaryotic homologues. We show that deletion or mutation of the insertion peptide modestly impaired the enzyme''s catalytic efficiency in vitro (with a 2- to 3-fold increase in Km and a 5- to 8-fold decrease in kcat). Consistently, GRS2 can be conveniently converted to a functional gene via codon optimization, and the insertion peptide is dispensable for protein stability and the rescue activity of GRS1 at 30°C in vivo. A phylogenetic analysis further showed that GRS1 and GRS2 are paralogues that arose from a gene duplication event relatively recently, with GRS1 being the predecessor. These results indicate that GlyRS2 is an active enzyme essentially resembling the insertion peptide-deleted form of GlyRS1. Our study suggests that the insertion peptide represents a novel auxiliary domain, which facilitates both productive docking and catalysis of cognate tRNAs.  相似文献   
3.
4.
Recently we have studied thermodynamics of membrane-mediated β-amyloid formation in equilibrium experiments using penetratin-lipid mixtures. The results showed that penetratin bound to the membrane interface in the α-helical conformation when the peptide/lipid (P/L) ratios were below a lipid-dependent critical value P/L. When P/L reached P/L, small β-aggregates emerged, which served as the nuclei for large β-aggregates. Here we studied the corresponding kinetic process to understand the potential barriers for the membrane-mediated β-amyloid formation. We performed kinetic experiments using giant unilamellar vesicles made of 7:3 DOPC/DOPG. The observed time behavior of individual giant unilamellar vesicles, although complex, exhibited the physical effects seen in equilibrium experiments. Most interestingly, a potential barrier appeared to block penetratin from translocating across the bilayer. As a result, the kinetic value for the critical threshold P/L is roughly one-half of the value measured in equilibrium where peptides bind symmetrically on both sides of lipid bilayers. We also investigated the similarity and differences between the charged and neutral lipids in their interactions with penetratin. We reached an important conclusion that the bound states of peptides in lipid bilayers are largely independent of the charge on the lipid headgroups.  相似文献   
5.
Plant somatic cells have the capability to switch their cell fates from differentiated to undifferentiated status under proper culture conditions, which is designated as totipotency. As a result, plant cells can easily regenerate new tissues or organs from a wide variety of explants. However, the mechanism by which plant cells have such remarkable regeneration ability is still largely unknown. In this study, we used a set of meristem-specific marker genes to analyze the patterns of stem cell differentiation in the processes of somatic embryogenesis as well as shoot or root organogenesis in vitro. Our studies furnish preliminary and important information on the patterns of the de novo stem cell differentiation during various types of in vitro organogenesis.  相似文献   
6.
Objective: Pleural effusion is common problem, but the rapid and reliable diagnosis for specific pathogenic effusions are lacking. This study aimed to identify the diagnosis based on clinical variables to differentiate pleural tuberculous exudates from other pleural effusions. We also investigated the role of renin-angiotensin system (RAS) and matrix metalloproteinase (MMPs) in the pathogenesis of pleural exudates.Experimental design: The major components in RAS and extracellular matrix metabolism, including angiotensin converting enzyme (ACE), ACE2, MMP-2 and MMP-9 activities, were measured and compared in the patients with transudative (n = 45) and exudative (n = 80) effusions. The exudative effusions were come from the patients with tuberculosis (n = 20), pneumonia (n = 32), and adenocarcinoma (n = 28).Results: Increased ACE and equivalent ACE2 activities, resulting in a significantly increased ACE/ACE2 ratio in exudates, were detected compared to these values in transudates. MMP-9 activity in exudates was significantly higher than that in transudates. The significant correlation between ACE and ACE2 activity that was found in transudates was not found in exudates. Advanced analyses showed significantly increased ACE and MMP-9 activities, and decreased ACE2 activity in tuberculous pleural effusions compared with those in pneumonia and adenocarcinoma effusions. The results indicate that increased ACE and MMP-9 activities found in the exudates were mainly contributed from a higher level of both enzyme activities in the tuberculous pleural effusions.Conclusion: Interplay between ACE and ACE2, essential functions in the RAS, and abnormal regulation of MMP-9 probably play a pivotal role in the development of exudative effusions. Moreover, the ACE/ACE2 ratio combined with MMP-9 activity in pleural fluid may be potential biomarkers for diagnosing tuberculous pleurisy.  相似文献   
7.
8.
The effect of glutathione (GSH) depletion by L-buthionine-[S,R]-sulphoximine (BSO) on tumor necrosis factor-alpha (TNF-alpha)-induced adhesion molecule expression and mononuclear leukocyte adhesion to human umbilical vein endothelial cells (HUVECs) was investigated. Cells with marked depletion of cytoplasmic GSH, but with an intact pool of mitochondrial GSH, only slightly enhanced TNF-alpha-induced E-selectin and vascular cell adhesion molecule-1 (VCAM-1) expression, compared with the control. However, TNF-a-induced expression of both molecules was markedly enhanced when the mitochondrial GSH pool was diminished to <15% of the control. In contrast, TNF-alpha-induced intercellular adhesion molecule-1 (ICAM-1) expression was not affected by the depletion of either cytoplasmic or mitochondrial GSH. Marked enhancement of TNF-alpha-induced adhesion molecule expression by the depletion of mitochondrial GSH resulted in increased in mononuclear leukocyte adhesion to treated HUVECs, compared with the control. These effects parallel reactive oxygen species (ROS) formation by the depletion of mitochondrial but not cytoplasmic GSH. Our findings demonstrate that depletion of mitochondrial GSH renders more ROS generation in HUVECs, and mitochondrial GSH modulates TNF-alpha-induced adhesion molecule expression and mononuclear leukocyte adhesion in HUVECs.  相似文献   
9.
10.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号